Received 28 February 2005 Accepted 7 March 2005

Online 18 March 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Jia-Hui Chen, Yue-Qing Pu and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.043 wR factor = 0.149 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Chloromethyl-3-[4-(methylsulfonyl)phenyl]-1,2,4-oxadiazole

In the crystal structure of the title compound, $C_{10}H_9ClN_2O_3S$, there are intramolecular $C-H\cdots O$ and $C-H\cdots N$ and intermolecular $C-H\cdots O$ hydrogen bonds.

Comment

1,2,4–Oxadiazoles represent an important class of fivemembered heterocycles. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), anti-inflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties and are efficient as agonists [*e.g.* as angiotension (Naka & Kubo, 1999) and adhesion (Juraszyk *et al.*, 1997)] for different receptors. We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, where the dashed lines indicate intramolecular $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds (Table 2). There are also intermolecular $C-H\cdots O$ hydrogen bonds (Fig. 2). The combination of weak $C-H\cdots O$ interactions generates a three-dimensional network.

Experimental

A solution of chloroacetyl chloride (14 mmol) in toluene (10 ml) was added dropwise to a solution of 4-(methylsulfonyl)benzamidoxime (14 mmol) in toluene (60 ml). The resulting mixture was refluxed for 6 h. After cooling and filtration, crude (I) was obtained. The compound was purified by crystallization from a mixture of ethyl acetate (15 ml) and petroleum ether (7.5 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. ¹H NMR (CDCl₃): δ 8.29–8.31 (*m*, 2H), 8.07–8.09 (*m*, 2H), 4.78 (*s*, 2H), 3.09–3.10 (*s*, 3H).

Crystal data	
C ₁₀ H ₉ ClN ₂ O ₃ S	$D_x = 1.552 \text{ Mg m}^{-3}$
$M_r = 272.70$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 5.6170 (11) Å	reflections
b = 12.247 (2) Å	$\theta = 1013^{\circ}$
c = 16.993 (3) Å	$\mu = 0.50 \text{ mm}^{-1}$
$\beta = 93.06 \ (3)^{\circ}$	T = 293 (2) K
V = 1167.3 (4) Å ³	Block, colourless
Z = 4	$0.4 \times 0.3 \times 0.3 \text{ mm}$

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Enraf–Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 2514 measured reflections 2277 independent reflections 1707 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.149$ S = 1.012277 reflections 154 parameters

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.36 \text{ e} \text{ Å}^{-3}$

 $\theta_{\rm max} = 26.0^\circ$

 $\begin{array}{l} h = 0 \rightarrow 6 \\ k = 0 \rightarrow 14 \end{array}$

 $l = -20 \rightarrow 20$

3 standard reflections

frequency: 120 min

intensity decay: none

H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cl-C10	1.755 (3)	O3-N1	1.413 (3)
S-O2	1.433 (2)	N1-C8	1.307 (3)
S-O1	1.440 (2)	N2-C9	1.281 (4)
S-C1	1.750 (3)	N2-C8	1.373 (3)
S-C2	1.766 (3)	C5-C8	1.465 (4)
O3-C9	1.341 (3)	C9-C10	1.478 (4)
O2-S-O1	117.90 (15)	C9-N2-C8	103.0 (2)
O2-S-C1	109.60 (15)	N1-C8-N2	114.4 (3)
O1-S-C1	108.52 (15)	N1-C8-C5	122.5 (2)
O2-S-C2	108.38 (13)	N2-C8-C5	123.0 (2)
O1-S-C2	107.56 (13)	N2-C9-O3	113.5 (2)
C1 - S - C2	103.98 (14)	N2-C9-C10	128.5 (3)
C9-O3-N1	106.3 (2)	O3-C9-C10	118.0 (2)
C8-N1-O3	102.8 (2)	C9-C10-Cl	111.7 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
0.96	2.55	3.490 (4)	167
0.93	2.59	2.949 (3)	104
0.93	2.55	2.889 (3)	102
0.97	2.44	3.316 (4)	149
	<i>D</i> —H 0.96 0.93 0.93 0.97	D−H H···A 0.96 2.55 0.93 2.59 0.93 2.55 0.97 2.44	$\begin{array}{c ccccc} D-H & H\cdots A & D\cdots A \\ \hline 0.96 & 2.55 & 3.490 \ (4) \\ 0.93 & 2.59 & 2.949 \ (3) \\ 0.93 & 2.55 & 2.889 \ (3) \\ 0.97 & 2.44 & 3.316 \ (4) \\ \hline \end{array}$

Symmetry codes: (i) 1 + x, y, z; (ii) 2 - x, -y, -z.

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.97 Å and included in the refinement in the riding-model approximation with $U_{\rm iso}({\rm H}) = 1.2$ or $1.5U_{\rm eq}$ of the carrier atom.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97*

Figure 1

A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds.

A partial packing diagram of (I). Dashed lines indicate $C-H\cdots O$ hydrogen bonds.

(Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). PCT Int. Appl. No. 9744333.
- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453–472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. No. 0260439.